

Welcome to tweakwcs documentation!

tweakwcs is a package that provides core algorithms for computing and
applying corrections to WCS objects such as to minimize mismatch between
image and reference catalogs. Currently only aligning images with FITS WCS
and JWST GWCS are supported.

Content

	imalign
	align_wcs()

	fit_wcs()

	WCS Correctors
	FITSWCSCorrector

	JWSTWCSCorrector

	WCSCorrector

	matchutils
	MatchCatalogs

	XYXYMatch

	wcsimage
	RefCatalog

	WCSGroupCatalog

	WCSImageCatalog

	convex_hull()

	linearfit
	build_fit_matrix()

	iter_linear_fit()

	wcsutils
	planar_rot_3d()

	linalg
	inv()

	LICENSE

Development Notes

	Release Notes

Indices and tables

	Index

	Search Page

imalign

A module that provides functions for “aligning” images: specifically, it
provides functions for computing corrections to image WCS so that
image catalogs “align” to the reference catalog on the sky.

	Authors:

	Mihai Cara

	License:

	LICENSE

	
tweakwcs.imalign.align_wcs(wcscat, refcat=None, ref_tpwcs=None, enforce_user_order=True, expand_refcat=False, minobj=None, match=<tweakwcs.matchutils.XYXYMatch object>, fitgeom='general', nclip=3, sigma=(3.0, 'rmse'), clip_accum=False, group_bb_policy='auto')

	Align (groups of) image catalogs by adjusting the parameters of their
WCS based on fits between matched sources in these catalogs and a reference
catalog which may be automatically created from one of the input wcscat
catalogs.

Warning

This function modifies the wcs attribute of each item
in the input wcscat list!

Upon completion, this function will add a field 'fit_info'
to the meta attribute of the input WCS correctors (except of the one
chosen as a reference catalog when refcat is None [https://docs.python.org/3/library/constants.html#None]) containing
a dictionary describing matching and fit results. For a description
of the items in this dictionary, see
tweakwcs.wcsimage.WCSGroupCatalog.align_to_ref(). In addition to the
status set by align_to_ref(),
this function may set status to 'REFERENCE' for an input image used
as a reference image when a reference catalog is not provided.
In this case no other fields in the 'fit_info' will be present
because a reference image is not being aligned. When alignment failed,
the reason for failure is provided after alignment status.

Warning

Unless status in 'fit_info' is 'SUCCESS', there is no
guarantee that other fields in 'fit_info' are present or
valid. Therefore, it is advisable verify that status is 'SUCCESS'
before attempting to access other items, for example:

>>> fit_info = wcscat[0].meta.get('fit_info') # noqa
>>> if fit_info['status'] == 'SUCCESS':
... print("shifts: [{}, {}]".format(*fit_info['shift']))
... else:
... print("tweak info not available for this image")

	Parameters:

	
	wcscat: tweakwcs.correctors.WCSCorrector, list of tweakwcs.correctors.WCSCorrector
	A list of all WCSCorrector-derived WCS
correctors whose meta dictionary must contain 'catalog'
item with a non-empty table value of type astropy.table.Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table].
This catalog must contain 'x' and 'y' columns which indicate
source coordinates (in pixels) in the associated image. An optional
column in the catalog is the 'weight' column, which when present,
will be used in fitting. See Notes section for further details.
In addition to 'catalog', the following items in the meta
dictionary are recognized/supported: 'name' and 'group_id'.
'name' is catalog’s name and it used to identify catalog during
logging. If 'name' value is None [https://docs.python.org/3/library/constants.html#None] or not present at all in the
meta of a catalog, the name of that catalog will reported as
'Unknown'. Group ID that may be used for identifying catalogs
that need to be aligned together. group_id must be hashable.
If 'group_id' is None [https://docs.python.org/3/library/constants.html#None] or not provided, each input WCS/catalog
will be aligned individually.

Note

Upon completion this function will add 'fit_info'
item (a dictionary) to input object’s meta dictionary.
See Notes section for more details.

Warning

This function modifies the WCS of WCSCorrector objects by
calling their
set_correction() method.

	refcat: astropy.table.Table, optional
	A reference source catalog. The catalog must contain 'RA' and
'DEC' columns which indicate reference source world
coordinates (in degrees). An optional column in the catalog is
the 'weight' column, which when present, will be used in fitting.
See Notes section for further details.

	ref_tpwcs: WCSCorrector, None, optional
	A reference WCS of the type WCSCorrector that provides the tangent
plane in which matching will be performed and corrections will be
defined. When not provided (i.e., set to None [https://docs.python.org/3/library/constants.html#None]), reference tangent
plane will be defined from the first WCSCorrector object
in the re-ordered (if enforce_user_order was
set to True [https://docs.python.org/3/library/constants.html#True]) input list wcscat.

	enforce_user_order: bool, optional
	Specifies whether images should be aligned in the order specified in
the file input parameter or align should optimize the order
of alignment by intersection area of the images. Default value (True [https://docs.python.org/3/library/constants.html#True])
will align images in the user specified order, except when some images
cannot be aligned in which case align will optimize the image
alignment order. Alignment order optimization is available only
when expand_refcat is True [https://docs.python.org/3/library/constants.html#True].

	expand_refcat: bool, optional
	Specifies whether to add new sources from just matched images to
the reference catalog to allow next image to be matched against an
expanded reference catalog. By delault, the reference catalog is not
being expanded.

If refcat is not None [https://docs.python.org/3/library/constants.html#None] and contains an 'id' column, then
sources being added to the reference catalog will be assigned
consecutive IDs that continue maximum ID in the refcat.

If one desires to uniquely associate source in the expanded catalog
to their original catalogs, it is recommended that one assign unique
IDs to all sources in all input catalogs and in the reference
catalog in a separate column such as 'uuid'.

	minobj: int, None, optional
	Minimum number of identified objects from each input image to use
in matching objects from other images. If the default None [https://docs.python.org/3/library/constants.html#None] value is
used then align will automatically deternmine the minimum number
of sources from the value of the fitgeom parameter.

	match: MatchCatalogs, function, None, optional
	A callable that takes two arguments: a reference catalog and an
image catalog. Both catalogs will have columns 'TPx' and
'TPy' that represent the source coordinates in some common
(to both catalogs) coordinate system.

	fitgeom: {‘shift’, ‘rshift’, ‘rscale’, ‘general’}, optional
	The fitting geometry to be used in fitting the matched object lists.
This parameter is used in fitting the offsets, rotations and/or scale
changes from the matched object lists. The ‘general’ fit geometry
allows for independent scale and rotation for each axis.

	nclip: int, None, optional
	Number (a non-negative integer) of clipping iterations in fit.
Clipping will be turned off if nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	sigma: float, tuple of the form (float, str), optional
	When a tuple is provided, first value (a positive number)
indicates the number of “fit error estimates” to use for clipping.
The second value (a string) indicates the statistic to be
used for “fit error estimate”. Currently the following values are
supported: 'rmse', 'mae', and 'std'
- see iter_linear_fit for more details.

When sigma is a single number, it must be a positive number and
the default error estimate 'rmse' is assumed.

This parameter is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	clip_accum: bool, optional
	Indicates whether or not to reset the list of “bad” (clipped out)
sources after each clipping iteration. When set to True [https://docs.python.org/3/library/constants.html#True] the list
only grows with each iteration as “bad” positions never re-enter
the pool of available position for the fit. By default the list of
“bad” source positions is purged at each iteration. This parameter
is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	group_bb_policy: int, {‘exact’, ‘auto’}
	Describes how to compute the bounding polygon of the group.
'exact' will compute the exact union of bounding boxes of
input images. An integer number will approximate the bounding
box using convex hull if the number of input images
is exceeds the value of group_bb_policy and it will switch to exact
computations (using unions) otherwise. 'auto' is the same as
setting threshold to 50.

	Returns:

	
	eff_refcat: astropy.table.Table
	Effective reference catalog used for aligning all images. Depending
on the values of the input parameters refcat,
enforce_user_order, and expand_refcat, effective
reference catalog may be one of the input image catalogs, the original
refcat catalog, an expanded refcat with a combination of
source positions from all input images.

Notes

1. Weights:

When fitting image sources to reference catalog sources, we can specify
which sources have higher weights. This can be done by assigning a “weight”
to each source by specifying these values in the optional 'weight'
column of either the reference catalog, image catalog, or both.

When weights are not provided, all sources are weighed equally. When
only either image or reference catalog weights are provided, the sources
will be weighted with the specified weights. When both image and
reference catalogs specify weights for the same sources, the two weights
will be combined into a single weight as:

\[1/w = 1/w_i + 1/w_r\]

Warning

Keep in mind that when a group catalog is created from individual
catalogs, weights of the group catalog are created by
concatenating weights of individual catalogs. Therefore,
for the weighting of groups of catalogs to work correctly,
the weights of individual catalogs should be scaled in such a way
that when individual catalogs are combined into a single
“group catalog”, weights preserve their relative values.

For example, let’s say a group is formed from two individual
catalogs. Let’s say first catalog contains four sources with equal
weights [1,1,1,1] and the second catalog contains two sources
with weights [1,1] then the group’s catalogs sources will
also have equal weights [1,1,1,1,1,1]. However, if each
individual catalog’s weights were normalized such that sum of
all weights is 1, then group’s sources will be weighed unequally:
[0.25,0.25,0.25,0.25,0.5,0.5].

Warning

When image catalogs contain optional 'weight' column, then
all image catalogs in a group must contain this column.

2. 'fit_info':

Upon completion, this function will add 'fit_info'
item (itself a dictionary) to input object’s meta dictionary.
If input objects are WCSCorrector WCS correctors,
then WCSCorrector.meta['fit_info'] will be set to a dictionary
containing fit information.

Note

For WCSCorrector that are aligned in a group,
the 'matrix' and 'shift' items in the 'fit_info'
dictionary may differ from
the values of the same items in WCSCorrector.meta dictionary.
This is normal since WCS corrections
(in WCSCorrector) are applied in the image’s
WCS plane while fit may be performed in a slightly different tangent
plane.

	
tweakwcs.imalign.fit_wcs(refcat, imcat, corrector, ref_tpwcs=None, fitgeom='general', nclip=3, sigma=(3.0, 'rmse'), clip_accum=False, group_bb_policy='auto')

	“Tweak” a single image’s WCS by fitting image catalog to a
reference catalog. This is a simplified version of align_wcs that does
not perform matching and is limited to the fitting part.

Note

Both reference and image catalogs must have been matched
prior to calling fit_wcs(). This means that the lengths of both
refcat and imcat catalogs must be equal and that coordinates
with the same indices in both catalogs correspond to the same source.

Warning

If corrector.meta dictionary contains 'catalog' keyword,
it will be ignored.

	Parameters:

	
	refcat: astropy.table.Table
	A reference source catalog. The catalog must contain 'RA' and
'DEC' columns which indicate reference source world
coordinates (in degrees). An optional column in the catalog is
the 'weight' column, which when present, will be used in fitting.
See Notes section for further details.

	imcat: astropy.table.Table
	Source catalog associated with an image whose WCS needs to be aligned
by fitting a linear transformation to imcat source positions so as
to align them to the same sources from the refcat catalog.
Must contain 'x' and 'y' columns which indicate source
coordinates (in pixels) in the associated image. An optional column in
the catalog is the 'weight' column, which when present, will be
used in fitting. See Notes section for further details.

	corrector: WCSCorrector
	A WCS associated with the image from which the catalog was derived.
This WCSCorrector-subclassed WCS corrector object must also
define a tangent plane that will be used for fitting the two catalogs’
sources and in which WCS corrections will be applied.

	ref_tpwcs: WCSCorrector, None, optional
	A reference WCS of the type WCSCorrector that provides the
tangent plane in which matching will be performed and corrections will
be defined. When not provided (i.e., set to None [https://docs.python.org/3/library/constants.html#None]), reference tangent
plane will be the same as defined by corrector argument.

	fitgeom: {‘shift’, ‘rshift’, ‘rscale’, ‘general’}, optional
	The fitting geometry to be used in fitting the matched object lists.
This parameter is used in fitting the offsets, rotations and/or scale
changes from the matched object lists. The ‘general’ fit geometry
allows for independent scale and rotation for each axis.

	nclip: int, None, optional
	Number (a non-negative integer) of clipping iterations in fit.
Clipping will be turned off if nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	sigma: float, tuple of the form (float, str), optional
	When a tuple is provided, first value (a positive number)
indicates the number of “fit error estimates” to use for clipping.
The second value (a string) indicates the statistic to be
used for “fit error estimate”. Currently the following values are
supported: 'rmse', 'mae', and 'std'
- see iter_linear_fit for more details.

When sigma is a single number, it must be a positive number and
the default error estimate 'rmse' is assumed.

This parameter is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	clip_accum: bool, optional
	Indicates whether or not to reset the list of “bad” (clipped out)
sources after each clipping iteration. When set to True [https://docs.python.org/3/library/constants.html#True] the list
only grows with each iteration as “bad” positions never re-enter
the pool of available position for the fit. By default the list of
“bad” source positions is purged at each iteration. This parameter
is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	group_bb_policy: int, {‘exact’, ‘auto’}
	Describes how to compute the bounding polygon of the group.
'exact' will compute the exact union of bounding boxes of
input images. An integer number will approximate the bounding
box using convex hull if the number of input images
is exceeds the value of group_bb_policy and it will switch to exact
computations (using unions) otherwise. 'auto' is the same as
setting threshold to 50.

	Returns:

	
	twwcs: WCSCorrector
	“Tweaked” (aligned) WCS that contains tangent-plane corrections
so that reference and image catalog sources better align in the tangent
plane and therefore on the sky as well.

Notes

When fitting image sources to reference catalog sources, we can specify
which sources have higher weights. This can be done by assigning a “weight”
to each source by specifying these values in the optional 'weight'
column of either the reference catalog, image catalog, or both.

When weights are not provided, all sources are weighed equally. When
only either image or reference catalog weights are provided, the sources
will be weighted with the specified weights. When both image and
reference catalogs specify weights for the same sources, the two weights
will be combined into a single weight as:

\[1/w = 1/w_i + 1/w_r\]

Warning

Keep in mind that when a group catalog is created from individual
catalogs, weights of the group catalog are created by
concatenating weights of individual catalogs. Therefore,
for the weighting of groups of catalogs to work correctly,
the weights of individual catalogs should be scaled in such a way
that when individual catalogs are combined into a single
“group catalog”, weights preserve their relative values.

For example, let’s say a group is formed from two individual
catalogs. Let’s say first catalog contains four sources with equal
weights [1,1,1,1] and the second catalog contains two sources
with weights [1,1] then the group’s catalogs sources will
also have equal weights [1,1,1,1,1,1]. However, if each
individual catalog’s weights were normalized such that sum of
all weights is 1, then group’s sources will be weighed unequally:
[0.25,0.25,0.25,0.25,0.5,0.5].

Upon successful completion, this function will set the 'fit_info'
key value of the meta attribute of the returned WCSCorrector
object. 'fit_info' is a dictionary with the following items:

	‘shift’: A numpy.ndarray with two components of the
computed shift. Note: shift is in units of the tangent plane.

	‘matrix’: A 2x2 numpy.ndarray with the computed
generalized rotation matrix.

	‘proper_rot’: Rotation angle (degree) as if the rotation is
proper.

	‘rot’: A tuple of (rotx, roty) - the rotation angles with
regard to the X and Y axes.

	‘<rot>’: Arithmetic mean of the angles of rotation around
X and Y axes.

	‘scale’: A tuple of (sx, sy) - scale change in the direction
of the X and Y axes.

	‘<scale>’: Geometric mean of scales sx and sy.

	‘skew’: Computed skew.

	‘proper’: a boolean indicating whether the rotation is proper.

	‘fitgeom’: Fit geometry (allowed transformations) used for
fitting data (to minimize residuals). This is copy of the input
argument fitgeom.

	‘center’: Center of rotation in the tangent plane of the
computed linear transformations.

	‘fitmask’: A boolean array indicating which source positions
where used for fitting (True [https://docs.python.org/3/library/constants.html#True]) and which were clipped out
(False [https://docs.python.org/3/library/constants.html#False]). NOTE: For weighted fits, positions with zero
weights are automatically excluded from the fits.

	‘eff_nclip’: Effective number of clipping iterations

	‘rmse’: fit Root-Mean-Square Error in tangent plane
coordinates of corrected image source positions from reference
source positions.

	‘mae’: fit Mean Absolute Error in tangent plane
coordinates of corrected image source positions from reference
source positions.

	‘std’: Norm of the standard deviation of the residuals
in tangent plane along each axis.

	‘resids’: An array of residuals of the fit in the
tangent plane.

NOTE: Only the residuals for the “valid” points are reported
here. Therefore the length of this array may be smaller than the
length of input arrays of positions.

	‘fit_RA’: first (corrected) world coordinate of input source
positions used in fitting.

	‘fit_DEC’: second (corrected) world coordinate of input
source positions used in fitting.

	‘status’: Alignment status. Currently two possible status are
possible 'SUCCESS' or 'FAILED: reason for failure'.
When alignment failed, the reason for failure is provided after
alignment status.

WCS Correctors

This module provides support for manipulating tangent-plane corrections
of WCS.

	Authors:

	Mihai Cara

	License:

	LICENSE

	
class tweakwcs.correctors.FITSWCSCorrector(wcs, meta=None)

	A class for holding FITS WCS information and for managing
tangent-plane corrections. The units of the tangent plane of this
corrector are same as detector coordinates.

Note

Currently only WCS objects that have CPDIS, DET2IM, and SIP
distortions before the application of the CD or PC matrix are
supported.

	Parameters:

	
	wcs: astropy.wcs.WCS
	An astropy.wcs.WCS [https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS] object.

	
property bounding_box

	Get the bounding box (if any) of the underlying image for which
the original WCS is defined.

	
det_to_tanp(x, y)

	Convert detector (pixel) coordinates to tangent plane coordinates.

	
det_to_world(x, y)

	Convert pixel coordinates to sky coordinates using full
(i.e., including distortions) transformations.

	
set_correction(matrix=[[1, 0], [0, 1]], shift=[0, 0], ref_tpwcs=None, meta=None, **kwargs)

	Computes a corrected (aligned) wcs based on the provided linear
transformation. In addition, this function updates the meta
attribute of the FITSWCSCorrector object with the the values of
keyword arguments except for the argument meta which is merged
with the attribute meta.

	Parameters:

	
	matrix: list, numpy.ndarray
	A 2x2 array or list of lists coefficients representing scale,
rotation, and/or skew transformations.

	shift: list, numpy.ndarray
	A list of two coordinate shifts to be applied to coordinates
after matrix transformations are applied.

	ref_tpwcs: WCSCorrector, None, optional
	A reference WCS of the type WCSCorrector that provides the
tangent plane in which corrections (matrix and shift) were
defined. When not provided (i.e., set to None [https://docs.python.org/3/library/constants.html#None]), it is assumed
that the transformations are being applied directly to this
image WCS’ tangent plane.

	meta: dict, None, optional
	Dictionary that will be merged to the object’s meta fields.

	**kwargs: optional parameters
	Optional parameters for the WCS corrector. FITSWCSCorrector
ignores these arguments (except for storing them in the meta
attribute).

	
tanp_to_det(x, y)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
tanp_to_world(x, y)

	Convert tangent plane coordinates to world coordinates.

	
units = 'pixel'

	

	
world_to_det(ra, dec)

	Convert sky coordinates to image’s pixel coordinates using full
(i.e., including distortions) transformations.

	
world_to_tanp(ra, dec)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
class tweakwcs.correctors.JWSTWCSCorrector(wcs, wcsinfo, meta=None)

	A class for holding JWST gWCS information and for managing
tangent-plane corrections. The units of the tangent plane of this
corrector are arcsec and the axes are not along parallel to the
axes of the detector’s coordinate system.

	Parameters:

	
	wcs: GWCS
	A GWCS object.

	wcsinfo: dict
	A dictionary containing reference angles of JWST instrument
provided in the wcsinfo property of JWST meta data.

This dictionary must contain the following keys and values:

	‘v2_ref’: float
	V2 position of the reference point in arc seconds.

	‘v3_ref’: float
	V3 position of the reference point in arc seconds.

	‘roll_ref’: float
	Roll angle in degrees.

	meta: dict, None, optional
	Dictionary that will be merged to the object’s meta fields.

	
property bounding_box

	Get the bounding box (if any) of the underlying image for which
the original WCS is defined.

	
det_to_tanp(x, y)

	Convert detector (pixel) coordinates to tangent plane coordinates.

	
det_to_world(x, y)

	Convert pixel coordinates to sky coordinates using full
(i.e., including distortions) transformations.

	
property ref_angles

	Return a wcsinfo-like dictionary of main WCS parameters.

	
set_correction(matrix=[[1, 0], [0, 1]], shift=[0, 0], ref_tpwcs=None, meta=None, **kwargs)

	Sets a tangent-plane correction of the GWCS object according to
the provided liniar parameters. In addition, this function updates
the meta attribute of the JWSTWCSCorrector object with the values
of keyword arguments except for the argument meta which is
merged with the attribute meta.

	Parameters:

	
	matrix: list, numpy.ndarray
	A 2x2 array or list of lists coefficients representing scale,
rotation, and/or skew transformations.

	shift: list, numpy.ndarray
	A list of two coordinate shifts to be applied to coordinates
after matrix transformations are applied.

	ref_tpwcs: WCSCorrector, None, optional
	A reference WCS of the type WCSCorrector that provides the
tangent plane in which corrections (matrix and shift) were
defined. When not provided (i.e., set to None [https://docs.python.org/3/library/constants.html#None]), it is assumed
that the transformations are being applied directly to this
image WCS’ tangent plane.

	meta: dict, None, optional
	Dictionary that will be merged to the object’s meta fields.

	**kwargs: optional parameters
	Optional parameters for the WCS corrector. JWSTWCSCorrector
ignores these arguments (except for storing them in the meta
attribute).

	
tanp_to_det(x, y)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
tanp_to_world(x, y)

	Convert tangent plane coordinates to world coordinates.

	
units = 'arcsec'

	

	
world_to_det(ra, dec)

	Convert sky coordinates to image’s pixel coordinates using full
(i.e., including distortions) transformations.

	
world_to_tanp(ra, dec)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
class tweakwcs.correctors.WCSCorrector(wcs, meta=None)

	A class that provides common interface for manipulating WCS information
and for managing tangent-plane corrections.

	Parameters:

	
	wcs: ``WCS object``
	A WCS object supported by a child class.

	meta: dict, None, optional
	Dictionary that will be merged to the object’s meta fields.

	
property bounding_box

	Get the bounding box (if any) of the underlying image for which
the original WCS is defined.

	
copy()

	Returns a deep copy of this object.

	
abstract det_to_tanp(x, y)

	Convert detector (pixel) coordinates to tangent plane coordinates.

	
abstract det_to_world(x, y)

	Convert pixel coordinates to sky coordinates using full
(i.e., including distortions) transformations.

	
property meta

	

	
property original_wcs

	Get original WCS object.

	
abstract set_correction(matrix=[[1, 0], [0, 1]], shift=[0, 0], ref_tpwcs=None, meta=None, **kwargs)

	Sets a tangent-plane correction of the WCS object according to
the provided liniar parameters. In addition, this function updates
the meta attribute of the WCSCorrector-derived object with
the values of keyword arguments except for the argument meta
which is merged with the attribute meta.

	Parameters:

	
	matrix: list, numpy.ndarray, optional
	A 2x2 array or list of lists coefficients representing scale,
rotation, and/or skew transformations.

	shift: list, numpy.ndarray, optional
	A list of two coordinate shifts to be applied to coordinates
after matrix transformations are applied.

	ref_tpwcs: WCSCorrector, None, optional
	A reference WCS of the type WCSCorrector that provides the
tangent plane in which corrections (matrix and shift) were
defined. When not provided (i.e., set to None [https://docs.python.org/3/library/constants.html#None]), it is assumed
that the transformations are being applied directly to this
image WCS’ tangent plane.

	meta: dict, None, optional
	Dictionary that will be merged to the object’s meta fields.

	**kwargs: optional parameters
	Optional parameters for the WCS corrector.

	
property tanp_center_pixel_scale

	Estimate pixel scale in the tangent plane near a location
in the detector’s coordinate system corresponding to the origin of the
tangent plane.

	Returns:

	
	pscale: float
	Pixel scale [in units used in the tangent plane coordinate system]
in the tangent plane near a location in the detector’s plane
corresponding to the origin of the tangent plane.

	
tanp_pixel_scale(x, y)

	Estimate pixel scale in the tangent plane near a location
in the detector’s coordinate system given by parameters x and
y.

	Parameters:

	
	x: int, float
	X-coordinate of the pixel in the detector’s coordinate system
near which pixel scale in the tangent plane needs to be estimated.

	y: int, float
	Y-coordinate of the pixel in the detector’s coordinate system
near which pixel scale in the tangent plane needs to be estimated.

	Returns:

	
	pscale: float
	Pixel scale [in units used in the tangent plane coordinate system]
in the tangent plane near a location specified by detector
coordinates x and y.

	
abstract tanp_to_det(x, y)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
abstract tanp_to_world(x, y)

	Convert tangent plane coordinates to world coordinates.

	
units = None

	

	
property wcs

	Get current WCS object.

	
abstract world_to_det(ra, dec)

	Convert sky coordinates to image’s pixel coordinates using full
(i.e., including distortions) transformations.

	
abstract world_to_tanp(ra, dec)

	Convert tangent plane coordinates to detector (pixel) coordinates.

matchutils

A module that provides algorithms matching catalogs and for initial estimation
of shifts based on 2D histograms.

	License:

	LICENSE

	
class tweakwcs.matchutils.MatchCatalogs

	A class that provides common interface for matching catalogs.

	
class tweakwcs.matchutils.XYXYMatch(searchrad=3.0, separation=0.5, use2dhist=True, xoffset=0.0, yoffset=0.0, tolerance=1.0)

	Catalog source matching in tangent plane. Uses xyxymatch
algorithm to cross-match sources between this catalog and
a reference catalog.

Note

The tangent plane is a plane tangent to the celestial sphere and it
must be not distorted, that is, if image coordinates are distorted,
then distortion correction must be applied to them before tangent
plane coordinates are computed. Alternatively, one can think that
undistorted world coordinates are projected from the sphere onto the
tangent plane.

	Parameters:

	
	searchrad: float, optional
	The search radius for a match (in units of the tangent plane).

	separation: float, optional
	The minimum separation in the tangent plane (in units of
the tangent plane) for sources in the image and reference
catalogs in order to be considered to be disctinct sources.
Objects closer together than separation distance
are removed from the image and reference coordinate catalogs prior
to matching. This parameter gets passed directly to
xyxymatch() for use in matching the object
lists from each image with the reference catalog’s object list.

	use2dhist: bool, optional
	Use 2D histogram to find initial offset?

	xoffset: float, optional
	Initial estimate for the offset in X (in units of the tangent
plane) between the sources in the image and the reference catalogs.
This offset will be used for all input images provided.
This parameter is ignored when use2dhist is True [https://docs.python.org/3/library/constants.html#True].

	yoffset: float, optional
	Initial estimate for the offset in Y (in units of the tangent
plane) between the sources in the image and the reference catalogs.
This offset will be used for all input images provided.
This parameter is ignored when use2dhist is True [https://docs.python.org/3/library/constants.html#True].

	tolerance: float, optional
	The matching tolerance (in units of the tangent plane) after
applying an initial solution derived from the ‘triangles’
algorithm. This parameter gets passed directly to
xyxymatch() for use in matching
the object lists from each image with the reference image’s object
list.

wcsimage

This module provides support for working with image footprints on the sky and
source catalogs.

	Authors:

	Mihai Cara

	License:

	LICENSE

	
class tweakwcs.wcsimage.RefCatalog(catalog, name=None, footprint_tol=1.0)

	An object that holds a reference catalog and provides
tools for coordinate convertions using reference WCS as well as
catalog manipulation and expansion.

	Parameters:

	
	catalog: astropy.table.Table
	Reference catalog.

Note

Reference catalogs (Table [https://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table])
must contain both 'RA' and 'DEC' columns.

	name: str, None, optional
	Name of the reference catalog.

	footprint_tol: float, optional
	Matching tolerance in arcsec. This is used to estimate catalog’s
footprint when catalog contains only one or two sources.

	
calc_bounding_polygon()

	Calculate bounding polygon of the sources in the catalog.

	
calc_tanp_xy(tanplane_wcs)

	Compute x- and y-positions of the sources from the reference catalog
in the tangent plane provided by the tanplane_wcs.
This creates the following columns in the catalog’s table:
'TPx' and 'TPy'.

	Parameters:

	
	tanplane_wcs: WCSCorrector
	A WCSCorrector object that will provide transformations to
the tangent plane to which sources of this catalog a should be
“projected”.

	
property catalog

	Get/set image’s catalog.

	
expand_catalog(catalog)

	Expand current reference catalog with sources from another catalog.

If current catalog is empty, then the catalog being added will become
the new reference catalog. In this case if the catalog does have
id column, those ID values will be preserved. If the catalog
does not contain an ID column, then the new IDs will be assigned
in increasing order starting with 1.

If the existing reference catalog is not empty, then the IDs from the
catalog being added will be discarded and new IDs will be assigned
in the increasing order such as to continue the numbering of existing
source positions in the reference catalog.

	Parameters:

	
	catalog: astropy.table.Table
	A catalog of new sources to be added to the existing reference
catalog. catalog must contain both 'RA' and 'DEC'
columns.

	
intersection(wcsim)

	Compute intersection of this WCSImageCatalog object and another
WCSImageCatalog, WCSGroupCatalog, RefCatalog, or
SphericalPolygon
object.

	Parameters:

	
	wcsim: WCSImageCatalog, WCSGroupCatalog, RefCatalog, SphericalPolygon
	Another object that should be intersected with this
WCSImageCatalog.

	Returns:

	
	polygon: SphericalPolygon
	A SphericalPolygon that is
the intersection of this WCSImageCatalog and wcsim.

	
intersection_area(wcsim)

	Calculate the area of the intersection polygon.

	
property name

	Get/set RefCatalog object’s name.

	
property poly_area

	Area of the bounding polygon (in srad).

	
property polygon

	Get image’s (or catalog’s) bounding spherical polygon.

	
class tweakwcs.wcsimage.WCSGroupCatalog(images, name=None, bb_policy='auto')

	A class that holds together WCSImageCatalog image catalog objects
whose relative positions are fixed and whose source catalogs should be
fitted together to a reference catalog.

	Parameters:

	
	images: list of WCSImageCatalog
	A list of WCSImageCatalog image catalogs.

	name: str, None, optional
	Name of the group.

	bb_policy: int, {‘exact’, ‘auto’}
	Describes how to compute the bounding polygon of the group.
'exact' will compute the exact union of bounding boxes of
input images. An integer number will approximate the bounding
box using convex hull if the number of input images
is exceeds the value of bb_policy and it will switch to exact
computations (using unions) otherwise. 'auto' is the same as
setting threshold to 50.

	
align_to_ref(refcat, ref_tpwcs=None, match=None, minobj=None, fitgeom='rscale', nclip=3, sigma=(3.0, 'rmse'), clip_accum=False)

	Matches sources from the image catalog to the sources in the
reference catalog, finds the affine transformation between matched
sources, and adjusts images’ WCS according to this fit.

Upon successful return, this function will also set the following
fields of the fit_info attribute of each member
WCSImageCatalog object:

	‘fitgeom’: the value of the fitgeom argument

	‘eff_minobj’: effective value of the minobj parameter

	‘matrix’: computed rotation matrix

	‘shift’: shift (offset) along X- and Y-axis in units of the
tangent plane coordinates.

	‘rot’: A tuple of (rotx, roty) - the rotation angles with
regard to the X and Y axes.

	‘<rot>’: Arithmetic mean of the angles of rotation around
X and Y axes.

	‘proper_rot’: rotation angle as if rotation is a proper
rotation.

	‘proper’: Indicates whether the rotation is a proper rotation
(boolean)

	‘scale’: A tuple of (sx, sy) - scale change in the
direction of the X and Y axes.

	‘<scale>’: Geometric mean of scales sx and sy.

	‘skew’: Computed skew - an angle in the range [-180, 180).

	‘center’: Center of rotation in the tangent plane of the
computed linear transformations.

	‘fitmask’: boolean array indicating (with True [https://docs.python.org/3/library/constants.html#True]) sources
used for fitting

	‘nmatches’ [when match is not None [https://docs.python.org/3/library/constants.html#None]]: number of matched
sources

	‘matched_ref_idx’ [when match is not None [https://docs.python.org/3/library/constants.html#None]]: indices of
the matched sources in the reference catalog

	‘matched_input_idx’ [when match is not None [https://docs.python.org/3/library/constants.html#None]]: indices
of the matched sources in the “input” catalog (the catalog from
image to be aligned)

	‘fit_ref_idx’: indices of the sources from the reference
catalog used for fitting (a subset of ‘matched_ref_idx’ indices,
when match is not None [https://docs.python.org/3/library/constants.html#None], left after clipping iterations
performed during fitting)

	‘fit_input_idx’: indices of the sources from the “input”
(image) catalog used for fitting (a subset of
‘matched_input_idx’ indices, when match is not None [https://docs.python.org/3/library/constants.html#None],
left after clipping iterations performed during fitting)

	‘rmse’: fit Root-Mean-Square Error in tangent plane
coordinates of corrected image source positions from reference
source positions.

	‘mae’: fit Mean Absolute Error in tangent plane
coordinates of corrected image source positions from reference
source positions.

	‘std’: Norm of the STandard Deviation of the residuals
in tangent plane along each axis.

	‘fit_RA’: first (corrected) world coordinate of input source
positions used in fitting.

	‘fit_DEC’: second (corrected) world coordinate of input
source positions used in fitting.

	‘status’: Alignment status. Currently two possible status are
possible 'SUCCESS' or 'FAILED: reason for failure'.
When alignment failed, the reason for failure is provided after
alignment status.

Note

A 'SUCCESS' status does not indicate a “good” alignment. It
simply indicates that alignment algortithm has completed without
errors. Use other fields to evaluate alignment: fit RMSE
and MAE values, number of matched sources, etc.

Note

Many quantities in fit_info are in units of the tangent plane
coordinates, e.g., shift, rmse, std, mae. See
specific WCSCorrector in correctors for the units
of the tangent plane.

	Parameters:

	
	refcat: RefCatalog
	A RefCatalog object that contains a catalog of reference sources.

	ref_tpwcs: WCSCorrector
	A WCSCorrector object that defines a projection tangent plane to
be used for matching and fitting during alignment.

	match: MatchCatalogs, function, None, optional
	A callable that takes two arguments: a reference catalog and an
image catalog.

	minobj: int, None, optional
	Minimum number of identified objects from each input image to use
in matching objects from other images. If the default None [https://docs.python.org/3/library/constants.html#None] value
is used then align will automatically deternmine the minimum
number of sources from the value of the fitgeom parameter.
This parameter is used to interrupt alignment process (catalog
fitting, WCS “tweaking”) when the number of matched sources
is smaller than the value of minobj in which case this
method will return False [https://docs.python.org/3/library/constants.html#False].

	fitgeom: {‘shift’, ‘rscale’, ‘general’}, optional
	The fitting geometry to be used in fitting the matched object
lists. This parameter is used in fitting the offsets, rotations
and/or scale changes from the matched object lists. The ‘general’
fit geometry allows for independent scale and rotation for each
axis. This parameter is ignored if match is False [https://docs.python.org/3/library/constants.html#False].

	nclip: int, None, optional
	Number (a non-negative integer) of clipping iterations in fit.
Clipping will be turned off if nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

This parameter is ignored if match is False [https://docs.python.org/3/library/constants.html#False].

	sigma: float, tuple of the form (float, str), optional
	When a tuple is provided, first value (a positive number)
indicates the number of “fit error estimates” to use for clipping.
The second value (a string) indicates the statistic to be
used for “fit error estimate”. Currently the following values are
supported: 'rmse', 'mae', and 'std'
- see iter_linear_fit for more details.

When sigma is a single number, it must be a positive number and
the default error estimate 'rmse' is assumed.

This parameter is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0
or when match is False [https://docs.python.org/3/library/constants.html#False].

	clip_accum: bool, optional
	Indicates whether or not to reset the list of “bad” (clipped out)
sources after each clipping iteration. When set to True [https://docs.python.org/3/library/constants.html#True] the list
only grows with each iteration as “bad” positions never re-enter
the pool of available position for the fit. By default the list of
“bad” source positions is purged at each iteration. This parameter
is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	Returns:

	
	bool
	Returns True [https://docs.python.org/3/library/constants.html#True] if the number of matched sources is larger or equal
to minobj and all steps have been performed, including catalog
fitting and WCS “tweaking”. If the number of matched sources is
smaller than minobj, this function will return False [https://docs.python.org/3/library/constants.html#False].

	
apply_affine_to_wcs(ref_tpwcs, matrix, shift, meta=None)

	Applies a general affine transformation to the WCS.

	
bb_approx_threshold = 50

	

	
property bb_policy

	Get/set WCSImageCatalog policy for switching to
approximate computation of group’s bounding box.

	
calc_tanp_xy(tanplane_wcs)

	Compute x- and y-positions of the sources from the image catalog
in the tangent plane. This creates the following
columns in the catalog’s table: 'TPx' and 'TPy'.

	Parameters:

	
	tanplane_wcs: WCSCorrector
	A WCSCorrector object that will provide transformations to
the tangent plane to which sources of this catalog a should be
“projected”.

	
property catalog

	Get/set image’s catalog.

	
create_group_catalog()

	Combine member’s image catalogs into a single group’s catalog.

	Returns:

	
	group_catalog: astropy.table.Table
	Combined group catalog.

	
fit2ref(refcat, tanplane_wcs, fitgeom='general', nclip=3, sigma=(3.0, 'rmse'), clip_accum=False)

	Perform linear fit of this group’s combined catalog to the reference
catalog. When either/both group’s catalog or/and the reference catalog
contain 'weight' column, weigted fitting will be performed.
See Notes section for further details.

	Parameters:

	
	refcat: RefCatalog
	A RefCatalog object that contains a catalog of reference sources.

	tanplane_wcs: WCSCorrector
	A WCSCorrector object that will provide transformations to
the tangent plane to which sources of this catalog a should be
“projected”.

	fitgeom: {‘shift’, ‘rscale’, ‘general’}, optional
	The fitting geometry to be used in fitting the matched object
lists. This parameter is used in fitting the offsets, rotations
and/or scale changes from the matched object lists. The ‘general’
fit geometry allows for independent scale and rotation for
each axis.

	nclip: int, None, optional
	Number (a non-negative integer) of clipping iterations in fit.
Clipping will be turned off if nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	sigma: float, tuple of the form (float, str), optional
	When a tuple is provided, first value (a positive number)
indicates the number of “fit error estimates” to use for clipping.
The second value (a string) indicates the statistic to be
used for “fit error estimate”. Currently the following values are
supported: 'rmse', 'mae', and 'std'
- see iter_linear_fit for more details.

When sigma is a single number, it must be a positive number and
the default error estimate 'rmse' is assumed.

This parameter is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	clip_accum: bool, optional
	Indicates whether or not to reset the list of “bad” (clipped out)
sources after each clipping iteration. When set to True [https://docs.python.org/3/library/constants.html#True] the list
only grows with each iteration as “bad” positions never re-enter
the pool of available position for the fit. By default the list of
“bad” source positions is purged at each iteration. This parameter
is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

Notes

When fitting image sources to reference catalog sources, we can
specify which sources have higher weights. This can be done by
assigning a “weight” to each source by specifying these values
in the optional 'weight' column of either the reference catalog,
image catalog, or both.

When weights are not provided, all sources are weighed equally. When
only one of image or reference catalog weights are provided,
the sources will be weighted with the specified weights.
When both image and reference catalogs specify weights for
the same sources, the two weights will be combined into a single
weight as:

\[1/w = 1/w_i + 1/w_r\]

Warning

Keep in mind that when a group catalog is created from individual
catalogs, weights of the group catalog are created by
concatenating weights of individual catalogs. Therefore,
for the weighting of groups of catalogs to work correctly,
the weights of individual catalogs should be scaled in such a way
that when individual catalogs are combined into a single
“group catalog”, weights preserve their relative values.

For example, let’s say a group is formed from two individual
catalogs. Let’s say first catalog contains four sources with equal
weights [1,1,1,1] and the second catalog contains two sources
with weights [1,1] then the group’s catalogs sources will
also have equal weights [1,1,1,1,1,1]. However, if each
individual catalog’s weights were normalized such that sum of
all weights is 1, then group’s sources will be weighed unequally:
[0.25,0.25,0.25,0.25,0.5,0.5].

	
get_matched_cat()

	Retrieve only those sources from the catalog that have been
matched to the sources in the reference catalog.

	
get_unmatched_cat()

	Retrieve only those sources from the catalog that have not been
matched to the sources in the reference catalog.

	
intersection(wcsim)

	Compute intersection of this WCSGroupCatalog object and another
WCSImageCatalog, WCSGroupCatalog, or
SphericalPolygon
object.

	Parameters:

	
	wcsim: WCSImageCatalog, WCSGroupCatalog, SphericalPolygon
	Another object that should be intersected with this
WCSGroupCatalog.

	Returns:

	
	polygon: SphericalPolygon
	A SphericalPolygon that is
the intersection of this WCSGroupCatalog and wcsim.

	
intersection_area(wcsim)

	Calculate the area of the intersection polygon.

	
match2ref(refcat, match=None)

	
	Uses xyxymatch to cross-match sources between this catalog and
	a reference catalog.

	Parameters:

	
	refcat: RefCatalog
	A RefCatalog object that contains a catalog of reference sources
as well as a valid reference WCS.

	match: MatchCatalogs, function, None, optional
	A callable that takes two arguments: a reference catalog and an
image catalog. Both catalogs will have columns 'TPx' and
'TPy' that represent the source coordinates in some common
(to both catalogs) coordinate system.

	Returns:

	
	nmatches: int
	Number of found matches.

	mref_idx: numpy.ndarray
	Integer array indicating indices of sources in the reference
catalog that were matched to sources in group’s catalog.

	minput_idx: numpy.ndarray
	Integer array indicating indices of sources in group’s catalog
that were matched to sources in the reference catalog.

	
property name

	Get/set WCSImageCatalog object’s name.

	
property poly_area

	Area of the bounding polygon (in srad).

	
property polygon

	Get image’s (or catalog’s) bounding spherical polygon.

	
recalc_catalog_radec()

	Recalculate RA and DEC of the sources in the catalog.

	
update_bounding_polygon()

	Recompute bounding polygons of the member images.

	
class tweakwcs.wcsimage.WCSImageCatalog(catalog, corrector, name=None, group_id=None, meta={})

	A class that holds information pertinent to an image WCS and a source
catalog of the sources found in that image.

Warning

If tpwcs.meta dictionary contains any of the following
keywords 'catalog', 'name', or 'group_id', they
will be ignored without warning.

	Parameters:

	
	catalog: astropy.table.Table
	Source catalog associated with an image. Must contain 'x' and
'y' columns which indicate source coordinates (in pixels) in
the associated image.

	corrector: WCSCorrector
	WCSCorrector-derived tangent-plane WCS corrector object
associated with the image from which the catalog was derived.

	name: str, None, optional
	Image catalog’s name. This is used to identify catalog during
logging. If name is None [https://docs.python.org/3/library/constants.html#None], the name of this
WCSImageCatalog object will be set to 'Unknown'.

	group_id: hashable, None, optional
	Group ID that may be used for identifying catalogs that need
to be aligned together. group_id must be hashable.

	meta: dict, optional
	Additional information about image, catalog, and/or WCS to be
stored (for convenience) within WCSImageCatalog object.

	
property bb_radec

	Get a tuple of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of RA and DEC of the vertices of the
bounding polygon.

	
calc_bounding_polygon()

	Calculate bounding polygon of the image or of the sources in the
catalog (if catalog was set).

	
property catalog

	Get/set image’s catalog.

	
property corrector

	Get WCSCorrector WCS.

	
det_to_tanp(x, y)

	Convert detector (pixel) coordinates to tangent plane coordinates.

	
det_to_world(x, y)

	Convert pixel coordinates to sky coordinates using full
(i.e., including distortions) transformations.

	
property fit_info

	Get fit information - a dictionary. This class sets only the
'status' field but fitting routines may set additional fields.

	
property fit_status

	Get/Set fit status. This property is a shortcut to the 'status'
key value in the fit_info dictionary. When the
WCSImageCatalog object is created, fit_status is
initially set to 'SKIPPED'. Alignment tools are reponsible for
updating catalog’s fit status.

	
property group_id

	Get/set WCSImageCatalog object’s group ID that may be used
for identifying catalogs that need to be aligned together.
group_id must be hashable.

	
intersection(wcsim)

	Compute intersection of this WCSImageCatalog object and another
WCSImageCatalog, WCSGroupCatalog, or
SphericalPolygon
object.

	Parameters:

	
	wcsim: WCSImageCatalog, WCSGroupCatalog, SphericalPolygon
	Another object that should be intersected with this
WCSImageCatalog.

	Returns:

	
	polygon: SphericalPolygon
	A SphericalPolygon that is
the intersection of this WCSImageCatalog and wcsim.

	
intersection_area(wcsim)

	Calculate the area of the intersection polygon.

	
property name

	Get/set catalog’s name. This is used to identify catalog during
logging. Upon setting, the value will be converted to a str [https://docs.python.org/3/library/stdtypes.html#str].
When setting to None [https://docs.python.org/3/library/constants.html#None], the name will be set to 'Unknown'.

	
property poly_area

	Area of the bounding polygon (in srad).

	
property polygon

	Get image’s (or catalog’s) bounding spherical polygon.

	
tanp_to_det(x, y)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
tanp_to_world(x, y)

	Convert tangent plane coordinates to world coordinates.

	
property tpwcs

	
Deprecated since version 0.8.0: The tpwcs property is deprecated and may be removed in a future version.

Get WCSCorrector WCS.

	
world_to_det(ra, dec)

	Convert sky coordinates to image’s pixel coordinates using full
(i.e., including distortions) transformations.

	
world_to_tanp(ra, dec)

	Convert tangent plane coordinates to detector (pixel) coordinates.

	
tweakwcs.wcsimage.convex_hull(x, y, wcs=None, min_separation=None)

	Computes the convex hull of a set of 2D points.

Implements Andrew’s monotone chain algorithm [http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain].
The algorithm has O(n log n) complexity.

Credit: http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain

	Parameters:

	
	x: list, tuple, numpy.ndarray
	An iterable sequence of x-coordinates of points.

	y: list, tuple, numpy.ndarray
	An iterable sequence of y-coordinates of points.

	wcsfunction
	A function that takes two arguments (x, y) and converts them
to “world” coordinates. If provided, returned convex hull vertex
coordnates will be in “world” coordinates.

	min_separationNone, float
	A non-negative number or None [https://docs.python.org/3/library/constants.html#None]. When provided as a number, it
specifies the minimum separation in both x and y coordinates
between adjacent verices in the hull. Vertices too close to their
neighbors will be removed. This operation is performed _before_
convertion to “world” coordinates. When min_separation is None [https://docs.python.org/3/library/constants.html#None],
all vertices are kept.

	Returns:

	
	Output: list
	A list of vertices of the convex hull in counter-clockwise order,
starting from the vertex with the lexicographically smallest
coordinates. When a coordinate conversion function is supplied via the
wcs argument, the returned values are those of the converted
vertex coordinates.

linearfit

A module that provides algorithms for performing linear fit between
sets of 2D points.

	Authors:

	Mihai Cara, Warren Hack

	License:

	LICENSE

	
tweakwcs.linearfit.build_fit_matrix(rot, scale=1)

	Create an affine transformation matrix (2x2) from the provided rotation
angle(s) and scale(s):

\[\begin{split}M = \begin{bmatrix}
 s_x \cos(\theta_x) & s_y \sin(\theta_y) \\
 -s_x \sin(\theta_x) & s_y \cos(\theta_y)
 \end{bmatrix}\end{split}\]

	Parameters:

	
	rot: tuple, float, optional
	Rotation angle in degrees. Two values (one for each axis) can be
provided as a tuple.

	scale: tuple, float, optional
	Scale of the liniar transformation. Two values (one for each axis)
can be provided as a tuple.

	Returns:

	
	matrix: numpy.ndarray
	A 2x2 numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing coefficients of a liniear
transformation.

	
tweakwcs.linearfit.iter_linear_fit(xy, uv, wxy=None, wuv=None, fitgeom='general', center=None, nclip=3, sigma=(3.0, 'rmse'), clip_accum=False)

	Compute linear transformation parameters that “best” (in the sense of
minimizing residuals) transform uv source position to xy
sources iteratively using sigma-clipping.

More precisely, this functions attempts to find a 2x2 matrix F and
a shift vector s that minimize the residuals between the transformed
reference source coordinates uv

(1)\[\mathbf{xy}'_k = \mathbf{F}\cdot(\mathbf{uv}_k-\mathbf{c})+\
\mathbf{s} + \mathbf{c}\]

and the “observed” source positions xy:

(2)\[\epsilon^2 = \Sigma_k w_k \|\mathbf{xy}_k-\mathbf{xy}'_k\|^2.\]

In the above equations, \(\mathbf{F}\) is a 2x2 matrix while
\(\mathbf{xy}_k\) and \(\mathbf{uv}_k\) are the position
coordinates of the k-th source (row in input xy and uv arrays).

One of the two catalogs (xy or uv) contains what we refer to as
“image” source positions and the other one as “reference” source positions.
The meaning assigned to xy and uv parameters are up to the
caller of this function.

	Parameters:

	
	xy: numpy.ndarray
	A (N, 2)-shaped array of source positions (one 2-coordinate
position per line).

	uv: numpy.ndarray
	A (N, 2)-shaped array of source positions (one 2-coordinate
position per line). This array must have the same length (shape)
as the xy array.

	wxy: numpy.ndarray, None, optional
	A 1-dimensional array of weights of the same length (N)
as xy array indicating how much a given coordinate should be
weighted in the fit. If not provided or set to None [https://docs.python.org/3/library/constants.html#None], all positions
will be contribute equally to the fit if wuv is also set to None [https://docs.python.org/3/library/constants.html#None].
See Notes section for more details.

	wuv: numpy.ndarray, None, optional
	A 1-dimensional array of weights of the same length (N)
as xy array indicating how much a given coordinate should be
weighted in the fit. If not provided or set to None [https://docs.python.org/3/library/constants.html#None], all positions
will be contribute equally to the fit if wxy is also set to None [https://docs.python.org/3/library/constants.html#None].
See Notes section for more details.

	fitgeom: {‘shift’, ‘rshift’, ‘rscale’, ‘general’}, optional
	The fitting geometry to be used in fitting the matched object lists.
This parameter is used in fitting the shifts (offsets), rotations
and/or scale changes from the matched object lists. The ‘general’
fit geometry allows for independent scale and rotation for each axis.

	center: tuple, list, numpy.ndarray, None, optional
	A list-like container with two X- and Y-positions of the center
(origin) of rotations in the uv and xy coordinate frames.
If not provided, center is estimated as a (weighted) mean position
in the uv frame.

	nclip: int, None, optional
	Number (a non-negative integer) of clipping iterations in fit.
Clipping will be turned off if nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	sigma: float, tuple of the form (float, str), optional
	When a tuple is provided, first value (a positive number)
indicates the number of “fit error estimates” to use for clipping.
The second value (a string) indicates the statistic to be
used for “fit error estimate”. Currently the following values are
supported: 'rmse', 'mae', and 'std'
- see Notes section for more details.

When sigma is a single number, it must be a positive number and
the default error estimate 'rmse' is assumed.

This parameter is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	clip_accum: bool, optional
	Indicates whether or not to reset the list of “bad” (clipped out)
sources after each clipping iteration. When set to True [https://docs.python.org/3/library/constants.html#True] the list
only grows with each iteration as “bad” positions never re-enter
the pool of available position for the fit. By default the list of
“bad” source positions is purged at each iteration. This parameter
is ignored when nclip is either None [https://docs.python.org/3/library/constants.html#None] or 0.

	Returns:

	
	fit: dict
	
	'shift': A numpy.ndarray with two components of the
computed shift.

	'shift_ld': A numpy.ndarray with two components of the
computed shift of type numpy.longdouble.

	'matrix': A 2x2 numpy.ndarray with the computed
generalized rotation matrix.

	'matrix_ld': A 2x2 numpy.ndarray with the computed
generalized rotation matrix of type numpy.longdouble.

	'proper_rot': Rotation angle (degree) as if the rotation is
proper.

	'rot': A tuple of (rotx, roty) - the rotation angles with
regard to the X and Y axes.

	'<rot>': Arithmetic mean of the angles of rotation around
X and Y axes.

	'scale': A tuple of (sx, sy) - scale change in the direction
of the X and Y axes.

	'<scale>': Geometric mean of scales sx and sy.

	'skew': Computed skew.

	'proper': a boolean indicating whether the rotation is proper.

	'fitgeom': Fit geometry (allowed transformations) used for
fitting data (to minimize residuals). This is copy of the input
argument fitgeom.

	'center': Center of rotation

	'center_ld': Center of rotation as a numpy.longdouble.

	'fitmask': A boolean array indicating which source positions
where used for fitting (True [https://docs.python.org/3/library/constants.html#True]) and which were clipped out
(False [https://docs.python.org/3/library/constants.html#False]). NOTE For weighted fits, positions with zero
weights are automatically excluded from the fits.

	'eff_nclip': Effective number of clipping iterations

	'rmse': Root-Mean-Square Error

	'mae': Mean Absolute Error

	'std': Standard Deviation of the residuals

	'resids': An array of residuals of the fit.
NOTE: Only the residuals for the “valid” points are reported
here. Therefore the length of this array may be smaller than the
length of input arrays of positions.

Notes

Weights

Weights can be provided for both “image” source positions and “reference”
source positions. When no weights are given, all positions are weighted
equally. When only one set of positions have weights (i.e., either wxy
or wuv is not None [https://docs.python.org/3/library/constants.html#None]) then weights in (2) are set to be equal
to the provided set of weights. When weights for both “image” source
positions and “reference” source positions are provided, then the
combined weight that is used in (2) is computed as:

\[1/w = 1/w_{xy} + 1/w_{uv}.\]

Statistics for clipping

Several statistics are available for clipping iterations and all of them
are reported in the returned fit dictionary regardless of the
setting in sigma:

\[\mathrm{RMSE} = \sqrt{\Sigma_k w_k \|\mathbf{r}_k\|^2}\]

\[\mathrm{MAE} = \sqrt{\Sigma_k w_k \|\mathbf{r}_k\|}\]

\[\mathrm{STD} = \sqrt{\Sigma_k w_k \|\mathbf{r}_k - \
 \mathbf{\overline{r}}\|^2}/(1-V_2)\]

where \(\mathbf{r}_k=\mathbf{xy}_k-\mathbf{xy}'_k\),
\(\Sigma_k w_k = 1\), and \(V_2=\Sigma_k w_k^2\).

wcsutils

A module that provides utility functions for WCS transformations.

	Authors:

	Mihai Cara (contact: help@stsci.edu)

	License:

	LICENSE

	
tweakwcs.wcsutils.planar_rot_3d(angle, axis)

	Create a 3D rotation matrix that performs a rotation in a plane
perpendicular to the specified axis.

linalg

This module provides general purpose and/or specialized linear algebra
routines.

	Authors:

	Mihai Cara (contact: help@stsci.edu)

	License:

	LICENSE

	
tweakwcs.linalg.inv(m)

	This function computes inverse matrix using Gauss-Jordan elimination
with full pivoting. Computations are performed using numpy.longdouble
precision. On systems on which numpy.longdouble is equivalent to
numpy.double this function reverts to numpy.linalg.inv [https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv] for
performance reasons.

	Parameters:

	
	m: numpy.ndarray
	A 2D square matrix of type numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Returns:

	
	invm: numpy.ndarray
	Inverse matrix of the input matrix m: a 2D square numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
of type numpy.longdouble on systems on which it is more accurate
than numpy.double.

LICENSE

Copyright (C) 2023, Association of Universities for Research in Astronomy

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Release Notes

0.8.7 (29-March-2024)

	Fix a bug in the imalign.align_wcs function due to which reference catalog
would not get expanded even for successful alignments, essentially disabling
expand_refcat option. [#201]

0.8.6 (08-January-2024)

	Improved the quality of the expanded reference catalog when
expand_refcat is set to True [https://docs.python.org/3/library/constants.html#True] in the align_wcs function by not
using input catalogs that failed to align in the expanded reference
catalog. [#195]

	Reduce memory & compute needed by _xy_2dhist by pruning distant
pairs with a kdtree. This is a purely internal change that does not
affect the results of the algorithm. [#196]

0.8.5 (30-November-2023)

	Addressed compatibility issues with Python 3.12. Re-organized package
setup machinery. [#188]

0.8.4 (unreleased)

	Mistaken tagging.

0.8.3 (12-September-2023)

	Fixed a bug in the linalg module due to which computation of the inverse
matrix would fallback to custom implementation instead of using numpy
implementation. [#185]

	Fixed incompatibilities with the future (version 2.0) release of
numpy. [#185]

0.8.2 (13-April-2023)

	Added bb_policy argument to the WCSGroupCatalog to control when
to switch to an aproximate method of computing of the bounding polygon of
a group of images. The default value is set to 50. Also added equivalent
group_bb_policy argument to both fit_wcs and align_wcs
functions. [#176]

0.8.1 (23-December-2022)

	Fixed a bug in the XYXYMatch due to which bin size for the 2D histogram
pre-match alignment did not account for the pixel scale in the tangent plane.
This required a change in the API of XYXYMatch.__call__ which now
must have tp_pscale as input and also inputs catalogs now _must_
contain 'TPx' and 'TPy' columns. [#173]

	Deprecated 'tp_wcs' argument of the XYXYMatch.__call__() method.
Use 'tp_pscale' instead. [#173]

0.8.0 (25-August-2022)

	Exposed in top-level functions parameter clip_accum that controls
whether or not to reset the list of “bad” (clipped out) sources after each
clipping iteration during model fitting. [#169]

	Deprecated tweakwcs.tpwcs module in favor of
tweakwcs.correctors. [#170]

	
	Deprecated the following classes in the tweakwcs.tpwcs module:
	
	tweakwcs.tpwcs.TPWCS in favor of tweakwcs.correctors.WCSCorrector;

	tweakwcs.tpwcs.JWSTgWCS in favor of
tweakwcs.correctors.JWSTWCSCorrector;

	tweakwcs.tpwcs.FITSWCS in favor of
tweakwcs.correctors.FITSWCSCorrector. [#170]

	Deprecated tweakwcs.matchutils.TPMatch class. Use
tweakwcs.matchutils.XYXYMatch instead. [#170]

	Removed tanplane_wcs argument of the
WCSGroupCatalog.apply_affine_to_wcs() method. tanplane_wcs
was deprecated since 0.6.5. It was replaced with ref_tpwcs. [#170]

	Deprecated tpwcs argument of the WCSImageCatalog.__init__() as well
tpwcs property of the same class. Use corrector instead. [#170]

	Deprecated tpwcs argument of the tweakwcs.imalign.fit_wcs() in
favor of corrector. [#170]

0.7.4 (13-April-2022)

This is almost exclusively a maintenance release except for close vertices
in the convex hull issue to make the code more robust.

	Set gwcs min version to 0.14. [#158]

	Set astropy min version to 5.0.4. [#153]

	Remove consecutive convex hull vertices that are very close to each
other. [#147]

0.7.3 (12-August-2021)

	Fix a bug due to which minobj parameter to
WCSGroupCatalog.align_to_ref() and align_wcs() was ignored. [#144]

	Make peak finding code switch to center-of-mass algorithm when estimated
2D parabolic fit estimates a peak outside of the fit box. Reduce
accuracy loss in computation. [#143]

0.7.2 (13-May-2021)

	Make code more robust to exceptions in the spherical_geometry
package. [#138]

	Fixed a bug in matchutils._find_peak() due to which it could return
coordinates of the peak that were outside of the image. [#136]

	Fixed a bug in how re-projection was computed when center of the
transformations was provided. [#135]

0.7.1 (16-February-2021)

	Added support for detecting and using velocity aberration corrected
V2-V3 frames when available in JWST WCS ('v2v3vacorr'). [#130]

0.7.0 (11-November-2020)

	Added linearfit.fit_rshift function to support a new fitgeom fitting
mode 'rshift' that fits only for shifts and a rotation. [#128]

0.6.5 (09-September-2020)

	Added ref_tpwcs parameter to imalign.fit_wcs(),
imalign.align_wcs(), wcsimage.WCSGroupCatalog.align_to_ref() to allow
alignment to be performed in user-specified distortion-free tangent
plane. [#125]

	Renamed tanplane_wcs parameter in
wcsimage.WCSGroupCatalog.apply_affine_to_wcs() to ref_tpwcs.
tanplane_wcs parameter was deprecated and will be removed in a future
release. [#125]

0.6.4 (14-May-2020)

	Bug fix: Unable to initialize JWSTgWCS tangent-plane corrector from an
already corrected WCS. [#122]

	Fix a bug in how corrections are applied to a previously corrected
JWST WCS. [#120]

	Do not attempt to extract center of linear transformation when not available
in 'fit_info'. [#119]

0.6.3 (14-April-2020)

	Fixed a bug due to which reprojection transformation for JWST gWCS was
computed at wrong location in the tangent plane. [#118]

0.6.2 (07-April-2020)

	When WCS has valid bounding box, estimate scale at the center of the
bounding box. [#117]

	Adjust the point at which tangent plane-to-tangent plane transformation
is computed by 1/2 pixels for JWST corrections. This correction should
have no measurable impact on computed corrections. [#115]

0.6.1 (09-March-2020)

	Fixed a bug in applying JWST correction for the case when alignment is
performed twice on the same image. Due to this bug the inverse transformation
was not updated. [#112]

0.6.0 (25-February-2020)

	Fix a possible crash when aligning FITS WCS images due to an unusual way
stwcs.wcsutil.all_world2pix handles (or not) scalar arguments. [#110]

	Modified the angle at which the reported rotation angles are reported.
Now rotation angles have the range [-180, 180] degrees. [#109]

	Added support FITS WCS that use PC matrix instead of the CD matrix
used in HSTs WCS. [#108]

	Bug fix for alignment of multi-chip FITS images: correction of how
transformations from the reference tangent plane are converted to
individual images’ tangent planes. [#106]

	Significant re-organization of the fit_info dictionary. rot now
becomes proper_rot and rotxy now becomes rot containing only
rotx and roty. Also, scale now is a tuple of only two scales
sx and sy. The geometric mean scale is now a separate field
'<scale>' as well as the arithmetic mean of rotation angles
('<rot>'). Finally, 'offset' in the fit functions from the
linearfit module was renamed to 'shift' in order to match the
same field returned by functions from the imalign module. [#105]

	Linear fit functions now return the fit matrix F instead of its
transpose. [#100]

	Linear fit functions (in the linearfit module) use longdouble
for internal computations. [#100]

	Re-designed the JWSTgWCS corrector class to rely exclusively on
basic models available in astropy and gwcs instead of the TPCorr
class provided by the jwst pipeline. This eliminates the need to install
the jwst pipeline in order to align JWST images. [#96, #98]

0.5.3 (15-November-2019)

	Added logic to allow some input catalogs to be empty and to allow the
alignment to proceed as long as there are at least two non-empty
(image or group) input catalogs. [#94]

0.5.2 (26-July-2019)

	Fixed a deprecation issue in logging and added logic to compute image group’s
catalog name using a common prefix (if exists) of the names of constituent
images. [#92]

	Package version is now handled by setuptools_scm.
[#93]

0.5.1 (08-May-2019)

	Fixed a bug in the “2dhist” algorithm resulting in a crash when 2D histogram
has multiple maxima of the same value and no other value larger than
one. [#90]

0.5.0 (22-April-2019)

	Fixed a bug due to which a warning log message “Failed to align catalog…”
would be issued for successful alignments. [#84]

	Fixed a bug in creation of WCS image groups with empty catalogs. [#84]

	Fixed a bug in match2ref when it was run in a non-matching mode
(match=None) dute to which it was impossible to detect the case
when reference catalog has a different length from a supposedly matched
WCS group catalog. [#84]

	Fixed a bug in computation of the bounding polygon of a reference catalog
containing only two sources. [#84]

	Fixed a bug in convex_hull() resulting in incorrect type being returned
in case of empty input coordinate lists or whne only one point
is provided. [#84]

	Implemented a more robust estimate of the maximum type supported by
numpy.linalg.inv. [#82]

	Renamed wcsutils.planar_rot_3D to wcsutils.planar_rot_3d. [#75]

	Renamed wcsutils.cartesian2spherical to
wcsutils.cartesian_to_spherical and wcsutils.spherical2cartesian
to wcsutils.spherical_to_cartesian. [#71]

	Improved “2dhist” algorithm that performs simple catalog pre-alignment used
for source matching. [#69]

	Changed the default value of the searchrad parameter in
matchutils.TPMatch to 3. [#69]

0.4.5 (14-March-2019)

	Fixed incorrect pointer type introduced in previous release [#67].

0.4.4 (13-March-2019)

	Fixed VS2017 compiler error, "void *": unknown size. [#62, #63, #64]

0.4.3 (13-March-2019)

	Package maintenance release.

0.4.2 (21-February-2019)

	Fixed a bug due to which the fitting code would crash is wuv were
provided but wxy were set to None. [#60]

0.4.1 (14-February-2019)

	Code cleanup: removed debug print statements. [#59]

0.4.0 (08-February-2019)

	Matched indices, linear fit results and fit residuals are now set in the
input “WCS catalogs” meta['fit_info'] instead of
meta['tweakwcs_info']. [#57]

	Updated example notebook to reflect changes to API. [#57]

	Allow TPWCS classes to set meta during object instantiation.
This allows attaching, for example, a source catalog to the tangent-plane
WCS corrector object. [#57]

	align_wcs no longer supports NDData input. Instead catalogs can be
provided directly in the meta attribute of TPWCS-derived WCS
“correctors”. This fundamentally transfers the responsibility of
instantiating the correct tangent-plane WCS to the caller. This, in turn,
will allow future WCS to be supported by providing a custom TPWCS-derived
corrector defined externally to tweakwcs package. Second benefit is that
image data no longer need to be kept in memory in NDData objects as
image data are not needed for image alignment once catalogs have been
created. [#57]

	Renamed tweak_wcs to fit_wcs and tweak_image_wcs to
align_wcs. [#57]

	Fixed a bug due to which the code might crash due to an undefined ra
variable, see issue #55. [#56]

	tweak_image_wcs() now returns effective reference catalog used for
image alignment. [#54]

	Modified how IDs are assigned to the reference catalog source positions when
expand_refcat is True [https://docs.python.org/3/library/constants.html#True]: instead of having all sources numbered
consecutively starting with 1, now the code will attempt to preserve
the original IDs (if any) of the input reference catalog (refcat)
or an input image used as a reference catalog and consecutively number only
the sources being added to the refcat. [#54]

	Modified the clipping algorithm to start with all valid sources at each
iteration. In other words, clippings do not accumulate by default.
Old behavior can be replicated by setting clip_accum to True [https://docs.python.org/3/library/constants.html#True]. [#53]

	Cleaned-up iter_linear_fit interface as well as simplified the
fit dictionary returned by iter_linear_fit. [#53]

	Added option to specify statistics used for clipping. [#51, #52]

0.3.3 (21-January-2019)

	Corrected a bug in the non-weighted rscale fit. [#49]

	Corrected a bug in the computation of RMSE for the “general” fit. [#47]

	Added computation of MAE of the fit (in addition to RMSE), see
[Mean Absolute Error](https://en.wikipedia.org/wiki/Mean_absolute_error).
[#47]

	Renamed RMSD to RMSE (Root-Mean-Square Error). [#47]

0.3.2 (15-January-2019)

	Fixed the formula for computing RMSD of non-weighted fit. [#46]

0.3.1 (14-January-2019)

	Fixed Read-The-Docs build failure. [#45]

0.3.0 (14-January-2019)

	Implemented higher-accuracy matrix inversion. [#42]

	Bug fix related to not switching to using bounding_box instead of
pixel_shape. [#41]

	Added support for optional 'weight' column in catalogs indicating
the weight of each source in fitting linear transformations. [#41]

	Add support for weights to the linear fitting routines. [#40]

	Replaced the use of RMS for each axis with a single RMSD value, see
[Root-Mean-Square Deviation](https://en.wikipedia.org/wiki/Root-mean-square_deviation). [#40]

	Rely on pixel_bounds
[see APE 14](https://github.com/astropy/astropy-APEs/blob/master/APE14.rst)
when available for computation of image’s bounding box. [#39]

	Fix a bug in the computation of the world coordinates of the fitted
(aligned) sources. [#36]

0.2.0 (20-December-2018)

	Fix swapped reported reference and input indices of sources used for
fitting. [#34]

	Fix for non-initialized C arrays. [#34]

	Changelog correction. [#33]

0.1.1 (11-December-2018)

	Fixeded a bug due to which 'fit_ref_idx' and 'fit_input_idx'
fields in the fit dictionary were never updated. [#31]

	jwst (pipeline) package is no longer a hard dependency. [#30]

	Removed unnecessary install dependencies. [#30]

	Documentation improvements. [#30, #32]

	Corrected ‘RA’, ‘DEC’ units used to compute bounding polygon for the
reference catalog. [#30]

	Updated C code to avoid numpy deprecation warnings. [#30]

0.1.0 (08-December-2018)

	Added support for aligning FITS WCS. [#15, #16]

	Added keywords to meta attributes of the TPWCS and NDData
to allow easy access to the match and fit information. [#20, #21, #28]

	Package and setup re-design. Support for readthedocs. [#23]

	Documentation improvements. [#17, #18]

	Numerous other bug fixes, code clean-up, documentation improvements
and enhancements. [#2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14, #19, #22, #24, #25, #26, #27, #28, #29]

0.0.1 (25-April-2018)

Initial release. [#1]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tweakwcs	

 	
 	
 tweakwcs.correctors	

 	
 	
 tweakwcs.imalign	

 	
 	
 tweakwcs.linalg	

 	
 	
 tweakwcs.linearfit	

 	
 	
 tweakwcs.matchutils	

 	
 	
 tweakwcs.wcsimage	

 	
 	
 tweakwcs.wcsutils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	align_to_ref() (tweakwcs.wcsimage.WCSGroupCatalog method)

 	
 	align_wcs() (in module tweakwcs.imalign)

 	apply_affine_to_wcs() (tweakwcs.wcsimage.WCSGroupCatalog method)

B

 	
 	bb_approx_threshold (tweakwcs.wcsimage.WCSGroupCatalog attribute)

 	bb_policy (tweakwcs.wcsimage.WCSGroupCatalog property)

 	bb_radec (tweakwcs.wcsimage.WCSImageCatalog property)

 	
 	bounding_box (tweakwcs.correctors.FITSWCSCorrector property)

 	(tweakwcs.correctors.JWSTWCSCorrector property)

 	(tweakwcs.correctors.WCSCorrector property)

 	build_fit_matrix() (in module tweakwcs.linearfit)

C

 	
 	calc_bounding_polygon() (tweakwcs.wcsimage.RefCatalog method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	calc_tanp_xy() (tweakwcs.wcsimage.RefCatalog method)

 	(tweakwcs.wcsimage.WCSGroupCatalog method)

 	catalog (tweakwcs.wcsimage.RefCatalog property)

 	(tweakwcs.wcsimage.WCSGroupCatalog property)

 	(tweakwcs.wcsimage.WCSImageCatalog property)

 	
 	convex_hull() (in module tweakwcs.wcsimage)

 	copy() (tweakwcs.correctors.WCSCorrector method)

 	corrector (tweakwcs.wcsimage.WCSImageCatalog property)

 	create_group_catalog() (tweakwcs.wcsimage.WCSGroupCatalog method)

D

 	
 	det_to_tanp() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	
 	det_to_world() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

E

 	
 	expand_catalog() (tweakwcs.wcsimage.RefCatalog method)

F

 	
 	fit2ref() (tweakwcs.wcsimage.WCSGroupCatalog method)

 	fit_info (tweakwcs.wcsimage.WCSImageCatalog property)

 	
 	fit_status (tweakwcs.wcsimage.WCSImageCatalog property)

 	fit_wcs() (in module tweakwcs.imalign)

 	FITSWCSCorrector (class in tweakwcs.correctors)

G

 	
 	get_matched_cat() (tweakwcs.wcsimage.WCSGroupCatalog method)

 	
 	get_unmatched_cat() (tweakwcs.wcsimage.WCSGroupCatalog method)

 	group_id (tweakwcs.wcsimage.WCSImageCatalog property)

I

 	
 	intersection() (tweakwcs.wcsimage.RefCatalog method)

 	(tweakwcs.wcsimage.WCSGroupCatalog method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	intersection_area() (tweakwcs.wcsimage.RefCatalog method)

 	(tweakwcs.wcsimage.WCSGroupCatalog method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	
 	inv() (in module tweakwcs.linalg)

 	iter_linear_fit() (in module tweakwcs.linearfit)

J

 	
 	JWSTWCSCorrector (class in tweakwcs.correctors)

M

 	
 	match2ref() (tweakwcs.wcsimage.WCSGroupCatalog method)

 	MatchCatalogs (class in tweakwcs.matchutils)

 	meta (tweakwcs.correctors.WCSCorrector property)

 	
 module

 	tweakwcs.correctors

 	tweakwcs.imalign

 	tweakwcs.linalg

 	tweakwcs.linearfit

 	tweakwcs.matchutils

 	tweakwcs.wcsimage

 	tweakwcs.wcsutils

N

 	
 	name (tweakwcs.wcsimage.RefCatalog property)

 	(tweakwcs.wcsimage.WCSGroupCatalog property)

 	(tweakwcs.wcsimage.WCSImageCatalog property)

O

 	
 	original_wcs (tweakwcs.correctors.WCSCorrector property)

P

 	
 	planar_rot_3d() (in module tweakwcs.wcsutils)

 	poly_area (tweakwcs.wcsimage.RefCatalog property)

 	(tweakwcs.wcsimage.WCSGroupCatalog property)

 	(tweakwcs.wcsimage.WCSImageCatalog property)

 	
 	polygon (tweakwcs.wcsimage.RefCatalog property)

 	(tweakwcs.wcsimage.WCSGroupCatalog property)

 	(tweakwcs.wcsimage.WCSImageCatalog property)

R

 	
 	recalc_catalog_radec() (tweakwcs.wcsimage.WCSGroupCatalog method)

 	
 	ref_angles (tweakwcs.correctors.JWSTWCSCorrector property)

 	RefCatalog (class in tweakwcs.wcsimage)

S

 	
 	set_correction() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

T

 	
 	tanp_center_pixel_scale (tweakwcs.correctors.WCSCorrector property)

 	tanp_pixel_scale() (tweakwcs.correctors.WCSCorrector method)

 	tanp_to_det() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	tanp_to_world() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	tpwcs (tweakwcs.wcsimage.WCSImageCatalog property)

 	
 tweakwcs.correctors

 	module

 	
 	
 tweakwcs.imalign

 	module

 	
 tweakwcs.linalg

 	module

 	
 tweakwcs.linearfit

 	module

 	
 tweakwcs.matchutils

 	module

 	
 tweakwcs.wcsimage

 	module

 	
 tweakwcs.wcsutils

 	module

U

 	
 	units (tweakwcs.correctors.FITSWCSCorrector attribute)

 	(tweakwcs.correctors.JWSTWCSCorrector attribute)

 	(tweakwcs.correctors.WCSCorrector attribute)

 	
 	update_bounding_polygon() (tweakwcs.wcsimage.WCSGroupCatalog method)

W

 	
 	wcs (tweakwcs.correctors.WCSCorrector property)

 	WCSCorrector (class in tweakwcs.correctors)

 	WCSGroupCatalog (class in tweakwcs.wcsimage)

 	WCSImageCatalog (class in tweakwcs.wcsimage)

 	world_to_det() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

 	
 	world_to_tanp() (tweakwcs.correctors.FITSWCSCorrector method)

 	(tweakwcs.correctors.JWSTWCSCorrector method)

 	(tweakwcs.correctors.WCSCorrector method)

 	(tweakwcs.wcsimage.WCSImageCatalog method)

X

 	
 	XYXYMatch (class in tweakwcs.matchutils)

 nav.xhtml

 Table of Contents

 		
 Welcome to tweakwcs documentation!

 		
 imalign

 		
 align_wcs()

 		
 fit_wcs()

 		
 WCS Correctors

 		
 FITSWCSCorrector

 		
 FITSWCSCorrector.bounding_box

 		
 FITSWCSCorrector.det_to_tanp()

 		
 FITSWCSCorrector.det_to_world()

 		
 FITSWCSCorrector.set_correction()

 		
 FITSWCSCorrector.tanp_to_det()

 		
 FITSWCSCorrector.tanp_to_world()

 		
 FITSWCSCorrector.units

 		
 FITSWCSCorrector.world_to_det()

 		
 FITSWCSCorrector.world_to_tanp()

 		
 JWSTWCSCorrector

 		
 JWSTWCSCorrector.bounding_box

 		
 JWSTWCSCorrector.det_to_tanp()

 		
 JWSTWCSCorrector.det_to_world()

 		
 JWSTWCSCorrector.ref_angles

 		
 JWSTWCSCorrector.set_correction()

 		
 JWSTWCSCorrector.tanp_to_det()

 		
 JWSTWCSCorrector.tanp_to_world()

 		
 JWSTWCSCorrector.units

 		
 JWSTWCSCorrector.world_to_det()

 		
 JWSTWCSCorrector.world_to_tanp()

 		
 WCSCorrector

 		
 WCSCorrector.bounding_box

 		
 WCSCorrector.copy()

 		
 WCSCorrector.det_to_tanp()

 		
 WCSCorrector.det_to_world()

 		
 WCSCorrector.meta

 		
 WCSCorrector.original_wcs

 		
 WCSCorrector.set_correction()

 		
 WCSCorrector.tanp_center_pixel_scale

 		
 WCSCorrector.tanp_pixel_scale()

 		
 WCSCorrector.tanp_to_det()

 		
 WCSCorrector.tanp_to_world()

 		
 WCSCorrector.units

 		
 WCSCorrector.wcs

 		
 WCSCorrector.world_to_det()

 		
 WCSCorrector.world_to_tanp()

 		
 matchutils

 		
 MatchCatalogs

 		
 XYXYMatch

 		
 wcsimage

 		
 RefCatalog

 		
 RefCatalog.calc_bounding_polygon()

 		
 RefCatalog.calc_tanp_xy()

 		
 RefCatalog.catalog

 		
 RefCatalog.expand_catalog()

 		
 RefCatalog.intersection()

 		
 RefCatalog.intersection_area()

 		
 RefCatalog.name

 		
 RefCatalog.poly_area

 		
 RefCatalog.polygon

 		
 WCSGroupCatalog

 		
 WCSGroupCatalog.align_to_ref()

 		
 WCSGroupCatalog.apply_affine_to_wcs()

 		
 WCSGroupCatalog.bb_approx_threshold

 		
 WCSGroupCatalog.bb_policy

 		
 WCSGroupCatalog.calc_tanp_xy()

 		
 WCSGroupCatalog.catalog

 		
 WCSGroupCatalog.create_group_catalog()

 		
 WCSGroupCatalog.fit2ref()

 		
 WCSGroupCatalog.get_matched_cat()

 		
 WCSGroupCatalog.get_unmatched_cat()

 		
 WCSGroupCatalog.intersection()

 		
 WCSGroupCatalog.intersection_area()

 		
 WCSGroupCatalog.match2ref()

 		
 WCSGroupCatalog.name

 		
 WCSGroupCatalog.poly_area

 		
 WCSGroupCatalog.polygon

 		
 WCSGroupCatalog.recalc_catalog_radec()

 		
 WCSGroupCatalog.update_bounding_polygon()

 		
 WCSImageCatalog

 		
 WCSImageCatalog.bb_radec

 		
 WCSImageCatalog.calc_bounding_polygon()

 		
 WCSImageCatalog.catalog

 		
 WCSImageCatalog.corrector

 		
 WCSImageCatalog.det_to_tanp()

 		
 WCSImageCatalog.det_to_world()

 		
 WCSImageCatalog.fit_info

 		
 WCSImageCatalog.fit_status

 		
 WCSImageCatalog.group_id

 		
 WCSImageCatalog.intersection()

 		
 WCSImageCatalog.intersection_area()

 		
 WCSImageCatalog.name

 		
 WCSImageCatalog.poly_area

 		
 WCSImageCatalog.polygon

 		
 WCSImageCatalog.tanp_to_det()

 		
 WCSImageCatalog.tanp_to_world()

 		
 WCSImageCatalog.tpwcs

 		
 WCSImageCatalog.world_to_det()

 		
 WCSImageCatalog.world_to_tanp()

 		
 convex_hull()

 		
 linearfit

 		
 build_fit_matrix()

 		
 iter_linear_fit()

 		
 wcsutils

 		
 planar_rot_3d()

 		
 linalg

 		
 inv()

 		
 LICENSE

 		
 Release Notes

_static/minus.png

_static/plus.png

_static/file.png

